skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kerdboon, Jiranan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we prove pure point spectrum for a large class of Schrödinger operators over circle maps with conditions on the rotation number going beyond the Diophantine. More specifically, we develop the scheme to obtain pure point spectrum for Schrödinger operators with monotone bi-Lipschitz potentials over orientation-preserving circle homeomorphisms with Diophantine or weakly Liouville rotation number. The localization is uniform when the coupling constant is large enough. 
    more » « less